
Introduction 1
I.1. Introductory Example: a Surprising Encounter on the Corner of an Alley: TATA 2
I.1.1. Sales Engineer A, on a July 2006 morning 2
I.1.2. Salesman C (from the German automaker X), late August 3
I.1.3. Financial Executive B (an employee of the German automaker X), some four months later 3
I.1.4. Post scriptum 4 I.2. Conclusion 4

1 Concepts, Issues and Hypotheses 5
1.1. Introduction: governance and radar 5
1.1.1. Steering the ship 6
1.1.2. Corporate governance and strategic decision-making 6
1.1.3. The ship’s radar (Radio Detection And Ranging) 11
1.1.4. The organization’s “radar”, a tool for its governability 12
1.2. The organization’s environment and its governance through a “storm” 13
1.2.1. The ship, the ocean, and any danger to be faced 13
1.2.2. The enterprise, its environment, uncertainty, hazards, and opportunities 14
1.2.2.1. Examples of causes of hazard 15
1.2.2.1.1. Competitors 15
1.2.2.2. From the environment to the strategy 18
1.2.2.3. From strategy to the environment 18
1.2.3. Scrutinizing and interpreting of the environment 19
1.3. Anticipation (act of looking forward) 21
1.3.1. Anticipating: definition and examples 21
1.3.2. Do not confuse anticipation with forecasting 23
1.3.3. Anticipation and scenario-based forward-looking planning: possible complementarity 29
1.3.4. Anticipating odd events, discontinuities, anomalies, etc. 29
1.4. Anticipative information: two types 29
1.4.1. Definition 29
1.4.2. Difference between strategic information and day-to-day management information 30
1.4.3. Two types of anticipative information 30
1.5. Weak signals 32
1.5.1. Definition of a weak signal 32
1.5.2. An example of weak signal as the trigger to a warning 34
1.5.3. Should one prefer a “strong” but backward-looking signal, or a “weak” but forward-looking signal? 37
1.5.4. Conversion, transformation of a weak signal into an early warning signal 41
1.5.5. Should one refer to a “signal” or a “sign”? Intentionality of the sender 42
1.5.6. Weak signals... or decoys, deceptions, and information asymmetry 43
1.5.7. Characteristics of a weak signal: “stealthy information” 43
1.5.7.1. Useful characteristics 43
1.5.7.2. Regrettable characteristics 44
1.5.8. Sources emitting weak signals: examples 48
1.5.8.1. Field sources 48
1.5.8.2. Digital sources 49
1.5.8.3. Weak signals provoked by the receiver himself 50
1.6. Detecting weak signals 50
1.6.1. Individual intelligence (in the Latin sense of the word): a definition
1.6.2. Cognitive style of a person 52
1.6.3. Individual Cognitive biases 53
1.6.4. Fear 54

1.7. Interpreting, amplifying and exploiting weak signals to support strategic decision-making
1.7.1. Need for collective intelligence for interpreting weak signals 56
1.7.2. Collective creation of meaning: justification and definition of the process 58
1.7.2.1. Definition 58
1.7.2.3. Thought process carried out during collective creation of meaning 61
1.7.3. Definition of “collective intelligence” (CI) as the emergence of collective creation of meaning (CCM) 65
1.7.4. From collective creation of meaning to knowledge management 66
1.7.4.1. Discontinuous mode of collective creation of meaning 67
1.7.4.2. The need for mobilization and knowledge management 67

1.8. Puzzle® method for the operationalization of collective creation of meaning 67
1.8.1. Issue: why the puzzle metaphor? 68
1.8.2. Definition of the Puzzle® method 70
1.8.2.1. Positioning information items in relation to one another 71
1.8.2.2. Constructing potential links among information items 73
1.8.2.3. Storing successive puzzles for an audit and/or for possible future modeling of the treatment of weak signals 74
1.8.2.4. Avoiding confusion between the graphical representation of the puzzle and the drawing of a mindmap obtained using software 75
1.8.3. Fundamental hypotheses of the Puzzle® method 76
1.8.4. Work group and collective intelligence 78

1.9. Global VASIC process for detecting, recognizing and utilizing weak signals 78
1.9.1. Targeting of anticipative scanning and information sources 81
1.9.2. Tracking and individual selection of weak signals 82
1.9.3. Escalating information, collective / centralized selection and storage 84
1.9.4. Dissemination and preparation of information for collective creation of meaning sessions 84
1.9.5. Animation 85
1.9.6. Measurements: performance indicators of the VASIC process 85

2 Detecting, recognizing and corroborating a weak signal: applications 89
2.1. Recognition of a weak signal: examples 90
2.1.1. A lady heading up the purchasing function at a car equipment manufacturer? How bizarre! 90
2.1.2. When a weak signal is displayed on a sign in the street! 96
2.1.3. A research centre at EADS: why Singapore? 98
2.1.3.1. Background 99
2.1.3.2. Reasoning performed by the animator (it is he who italicized words in Box 2.1) 100
2.1.3.3. Conclusion 101
2.1.4. Danone 101
2.1.4.1. Background 101
2.1.4.2. Beginning sequence of the experiment 102
2.1.4.3. Interpretation 102

2.2. Corroborating a new weak signal 103
2.2.1. Reliability of the information source 104
2.2.2. Comparing the weak signal with other information obtained previously 104
2.2.3. Consulting with an “expert” 107
2.3. Conclusion 109
2.3.1. Result 109

3 Utilization of weak signals, collective creation of meaning: applications 113

3.1. The Roger case: should we fear this new entrant to our industry? (the banking sector)
3.1.1. Issues for Roger as a company 113
3.1.2. Context 114
3.1.3. The Committee for the Utilization of Information (Codexi) 114
3.1.4. Information to be used 115
3.1.5. Conduct of the collective work session 115
3.1.6. Results 123
3.1.6.1. Emergence of collective intelligence 123
3.1.6.2. A surprise to participants 125
3.1.6.2.1. Bounded rationality 125
3.1.6.2.2. Positive end result: creation of meaning has been performed collectively 126
3.1.6.3. Stimulating regrets: an interesting lead 127

3.2. The case for “valorizing CO2 as a commodity”: a preliminary study for the selection of a new strategic direction 127
3.2.1. The main problem: how to “give birth to an idea” within the Board of Directors? 128
3.2.2. Challenge: arousing the interest of the Board of Directors (BoD) 128
3.2.3. Preparing for the session (which will prove to be the first session) 129
3.2.4. Background of the experiment (first session) 130
3.2.5. Conduct of the session (first session) 132
3.2.6. Second session, three months later 136
3.2.7. Conclusion and post-scriptum 140

3.3. The Danone case. The ministry is worried: are there signs showing that companies will destroy jobs over the next two years? Could Danone leave France? 141
3.3.1. The issue at hand 141
3.3.2. Fresh interest in weak signals 142
3.3.3. Background: lack of cross-disciplinarity 142
3.3.4. Organization and conduct of the experiment 143
3.3.5. Targeting of a field of study 143
3.3.6. Selection of Danone as an agent 144
3.3.7. Conduct of the collective creation of meaning (CCM) experiment 145
3.3.7.1. Initiating interest in weak signals 145
3.3.7.2. Puzzle Links: alleviating initial data fragmentation, and consequently Danone’s low visibility 147
3.3.7.3. Danone weary of obstacles encountered in France? 150
3.3.7.4. The sirens’ call from abroad 153
3.3.8. Conclusion at the close of the last session: huge plausible risk on the horizon! 154

3.4. The Opel case: initiating collective transversal intelligence to aid strategic decision-making 158
3.4.1. Issues and background 158
3.4.2. Collective intelligence 158
3.4.3. Organizational context 159
3.4.4. Preparatory step upstream of the first CCM session 159
3.4.5. Conduct of the CCM session 161
3.4.6. Conclusions 172
3.4.6.1. Emergence of transversal collective intelligence 172
3.4.6.2. Methodological findings reached by the animator, lessons learned and leads toward new enrichments for the Puzzle® method 172

3.5. Conclusion 174

4 Preparation of weak signals for sessions in collective creation of meaning: applications

4.2. The Roger case (continued): how are the news briefs used in the Roger CCM session prepared? 180
4.2.1. Preparation of the news briefs used in the CCM 181
4.2.2. The search for raw data: a substantial task 181
4.2.3. Extraction of news briefs: a time-consuming, delicate task 182
4.2.4. The Internet trap 182

4.3. CO2 valorization case: automatic search for “news briefs“ 184
4.3.1. Guiding idea: “FULL text” distillation 184
4.3.2. Steps in the search for “possible weak signal” news briefs 185
4.3.2.1. Using Approxima in the “CO2 valorization” case 185
4.3.2.2. The importance of learning 190

4.4. The Danone case: preparation of the weak signals 191
4.4.1. “Manual” search 192
4.4.2. “Manual” extraction 192
4.4.3. Automatic news briefs search and extraction 193
4.4.4. Conclusions on the “CO2 valorization” and “Danone” cases having used the Approxima prototype 195

4.5. Software modules for assisting in the automatic search for news briefs 196
4.5.1. Lookup table of characteristic words for the field being explored. Continuation of the “CO2 valorization” case 196
4.5.2. Enhancing the anticipative- and characteristic-word bases 198
4.5.2.1. “Anticipative” words 198
4.5.2.2. “Characteristic” words (or keywords) 200
4.5.3. Semantics problems: synonyms, polysemes and related matters 201
4.5.3.1. Automatic search for “adjacent” information items 201
4.5.3.2. Associative computer memory 202
4.5.3.3.1. IBM 203
4.5.3.3.2. MACAO 203
4.5.3.4. Creation of noise 204
4.5.4. Software enabling “event searches” 204
4.5.5. Integration platform for commercially available software modules 205

4.6. Conclusion 206

Conclusion 208
Glossary 210
Bibliography 225
Index 233